831 research outputs found

    On Orderings of Probability Vectors and Unsupervised Performance Estimation

    Full text link
    Unsupervised performance estimation, or evaluating how well models perform on unlabeled data is a difficult task. Recently, a method was proposed by Garg et al. [2022] which performs much better than previous methods. Their method relies on having a score function, satisfying certain properties, to map probability vectors outputted by the classifier to the reals, but it is an open problem which score function is best. We explore this problem by first showing that their method fundamentally relies on the ordering induced by this score function. Thus, under monotone transformations of score functions, their method yields the same estimate. Next, we show that in the binary classification setting, nearly all common score functions - the L∞L^\infty norm; the L2L^2 norm; negative entropy; and the L2L^2, L1L^1, and Jensen-Shannon distances to the uniform vector - all induce the same ordering over probability vectors. However, this does not hold for higher dimensional settings. We conduct numerous experiments on well-known NLP data sets and rigorously explore the performance of different score functions. We conclude that the L∞L^\infty norm is the most appropriate.Comment: IJCAI 2023 Workshop on Generalizing from Limited Resources in the Open Worl

    STILN: A Novel Spatial-Temporal Information Learning Network for EEG-based Emotion Recognition

    Full text link
    The spatial correlations and the temporal contexts are indispensable in Electroencephalogram (EEG)-based emotion recognition. However, the learning of complex spatial correlations among several channels is a challenging problem. Besides, the temporal contexts learning is beneficial to emphasize the critical EEG frames because the subjects only reach the prospective emotion during part of stimuli. Hence, we propose a novel Spatial-Temporal Information Learning Network (STILN) to extract the discriminative features by capturing the spatial correlations and temporal contexts. Specifically, the generated 2D power topographic maps capture the dependencies among electrodes, and they are fed to the CNN-based spatial feature extraction network. Furthermore, Convolutional Block Attention Module (CBAM) recalibrates the weights of power topographic maps to emphasize the crucial brain regions and frequency bands. Meanwhile, Batch Normalizations (BNs) and Instance Normalizations (INs) are appropriately combined to relieve the individual differences. In the temporal contexts learning, we adopt the Bidirectional Long Short-Term Memory Network (Bi-LSTM) network to capture the dependencies among the EEG frames. To validate the effectiveness of the proposed method, subject-independent experiments are conducted on the public DEAP dataset. The proposed method has achieved the outstanding performance, and the accuracies of arousal and valence classification have reached 0.6831 and 0.6752 respectively

    On Achievable Rates of Line Networks with Generalized Batched Network Coding

    Full text link
    To better understand the wireless network design with a large number of hops, we investigate a line network formed by general discrete memoryless channels (DMCs), which may not be identical. Our focus lies on Generalized Batched Network Coding (GBNC) that encompasses most existing schemes as special cases and achieves the min-cut upper bounds as the parameters batch size and inner block length tend to infinity. The inner blocklength of GBNC provides upper bounds on the required latency and buffer size at intermediate network nodes. By employing a bottleneck status technique, we derive new upper bounds on the achievable rates of GBNCs These bounds surpass the min-cut bound for large network lengths when the inner blocklength and batch size are small. For line networks of canonical channels, certain upper bounds hold even with relaxed inner blocklength constraints. Additionally, we employ a channel reduction technique to generalize the existing achievability results for line networks with identical DMCs to networks with non-identical DMCs. For line networks with packet erasure channels, we make refinement in both the upper bound and the coding scheme, and showcase their proximity through numerical evaluations.Comment: This paper was presented in part at ISIT 2019 and 2020, and is accepted by a JSAC special issu

    iLoRE: Dynamic Graph Representation with Instant Long-term Modeling and Re-occurrence Preservation

    Full text link
    Continuous-time dynamic graph modeling is a crucial task for many real-world applications, such as financial risk management and fraud detection. Though existing dynamic graph modeling methods have achieved satisfactory results, they still suffer from three key limitations, hindering their scalability and further applicability. i) Indiscriminate updating. For incoming edges, existing methods would indiscriminately deal with them, which may lead to more time consumption and unexpected noisy information. ii) Ineffective node-wise long-term modeling. They heavily rely on recurrent neural networks (RNNs) as a backbone, which has been demonstrated to be incapable of fully capturing node-wise long-term dependencies in event sequences. iii) Neglect of re-occurrence patterns. Dynamic graphs involve the repeated occurrence of neighbors that indicates their importance, which is disappointedly neglected by existing methods. In this paper, we present iLoRE, a novel dynamic graph modeling method with instant node-wise Long-term modeling and Re-occurrence preservation. To overcome the indiscriminate updating issue, we introduce the Adaptive Short-term Updater module that will automatically discard the useless or noisy edges, ensuring iLoRE's effectiveness and instant ability. We further propose the Long-term Updater to realize more effective node-wise long-term modeling, where we innovatively propose the Identity Attention mechanism to empower a Transformer-based updater, bypassing the limited effectiveness of typical RNN-dominated designs. Finally, the crucial re-occurrence patterns are also encoded into a graph module for informative representation learning, which will further improve the expressiveness of our method. Our experimental results on real-world datasets demonstrate the effectiveness of our iLoRE for dynamic graph modeling
    • …
    corecore